My Account | Home| Bulletin Board| Cart | Help
Close Session
IISER-KIndian Institute of Science Education & Research - Kolkata
Quick Search
Search Terms:
All Documents
Books
Newspapers
Periodicals
Articles
Theses
E-Books
Database : IISERK

Set Session Filters
Login to ask the library to add a book.
Active Filter Settings
No Active Filters
There are 0 titles in your cart.

Search History
Special Collections: Government Publications
ty:m & bl:m
Special Collections: Maps
Special Collections: Music Scores
Special Collections: Audio Cassettes
Serial Collections: Newspapers
Recommended Reading
first record | previous record | next record | last record
full | marc
Record 7 of 2412
  Total Requests  0      Unsatisfied Requests  0
You searched IISERK - Subject: Ore-dressing Research.
Request
Call Number 533.293
Author Leiber, Carl-Otto.
Title Assessment of safety and risk with a microscopic model of detonation [electronic resource] / by Carl-Otto Leiber ; edited by Brigitta Dobratz.
Title Microscopic model of detonation
Publication Amsterdam ; Boston : Elsevier, 2003.
Material Info. xxii, 594 p. : ill. ; 25 cm.
Summary Note This unique book is a store of less well-known explosion and detonation phenomena, including also data and experiences related to safety risks. It highlights the shortcomings of the current engineering codes based on a classical plane wave model of the phenomenon, and why these tools must fail. For the first time all the explosion phenomena are described in terms of proper assemblages of hot spots, which emit pressure waves and associated near field terms in flow. Not all of the approaches are new. Some even date back to the 19th century or earlier.. What is new is the application of these approaches to explosion phenomena. In order to make these tools easily available to the current detonation physicist, basic acoustics is therefore also addressed. Whereas the current plane wave, homogeneous flow detonation physics is an excellent engineering tool for numerical predictions under given conditions, the multi-hot-spot-model is an additional tool for analyzing phenomena that cannot be explained by classical calculations. The real benefit comes from being able to understand, without any artificial assumptions, the whole phenomenology of detonations and explosions. By specifying pressure generating mechanisms, one is able to see that the current treatment of the detonics of energetic materials is only a very special - but powerful - case of explosion events and hazards. It becomes clear that physical explosions must be taken into account in any safety considerations. In these terms it is easy to understand why even liquid carbon dioxide and inert silo materials can explode. A unique collection of unexpected events, which might surprise even specialists, has resulted from the evaluation of the model. Therefore this book is valuable for each explosion and safety scientist for the understanding and forecasting of unwanted events. The text mainly addresses the next generation of explosion and detonation scientists, with the goal of promoting the science of detonation on a new physical basis. For this reason gaps in current knowledge are also addressed. The science of explosions is not fully mature, but is still in its beginning - and the tools necessary for furthering the understanding of these phenomena have been with us for centuries.
Notes Includes bibliographical references and indexes.
Notes Prologue. I. Shortcomings in the macroscopic plane-wave model of detonation. II. Impedance mirror photography of H. Dean Mallory. III. Pressure generating mechanis. IV. Equations. V. Pressure sources for modeling. VI. Rayleigh's bubble model. VII. Losses by volume variations. VIII. Variety of initiation modes by bubbles. IX. Various approaches to describe bubble dynamic phenomena. X. Sensitivity testing. XI. Low- (LVD) and slow-velocity detonation (SVD) of liquid explosives. XII. Low velocity detonation of solid explosives. XIII. Case histories. XIV. Dipole scattering. XV. Finite shock rise. XVI. Void precursors. XVII. Alterations of hugoniots by bubble flow. XVIII. Critical dimensions. XIX. Critical diameter(s) of nitromethane (NM). XX. Smooth and rough pressure fronts, dark waves and DDT. XXI. Shock tubes. XXII. Detonation phenomena in charges with an axial cavity. XXIII. Microscopic and macroscopic properties of solids. XXIV. Fracture dynamics of initiation. Authors. Subject index.
Notes Electronic reproduction. Amsterdam : Elsevier Science & Technology, 2007.
ISBN 9780444513328
ISBN 0444513329
Subject Detonation waves.
Subject Explosions Mathematical models.
Subject Explosives Safety measures.
Subject Electronic books.
Added Entry Dobratz, Brigitta.
Added Entry ScienceDirect (Online service)
Date Year, Month, Day:01405141
Link An electronic book accessible through the World Wide Web; click for information ScienceDirect
Link Publisher description
Link Table of contents only

Keyword Search

 Words: Search Type:
 
 

Database: IISERK

Any filter options that are chosen below will be combined with the Session Filters and applied to the search.
Nature of Contents Filters Format Filters

Including Excluding

Including Excluding
Language Filters Place of Publication Filters

Including Excluding

Including Excluding
Publication Date Context Date
  -     -  

Set Session Filters
Select below to return to the last:
Copyright © 2014 VTLS Inc. All rights reserved.
VTLS.com