My Account | Home| Bulletin Board| Cart | Help
Close Session
IISER-KIndian Institute of Science Education & Research - Kolkata
Quick Search
Search Terms:
All Documents
Books
Newspapers
Periodicals
Articles
Theses
E-Books
Database : IISERK

Set Session Filters
Login to ask the library to add a book.
Active Filter Settings
No Active Filters
There are 0 titles in your cart.

Search History
Serial Collections: Newspapers
ty:m & bl:m
Special Collections: Music Scores
Special Collections: Maps
Special Collections: Audio Cassettes
Special Collections: Government Publications
Recommended Reading
first record | previous record | next record | last record
full | marc
Record 1 of 1
  Total Requests  0      Unsatisfied Requests  0
You searched IISERK - Author: Goumans, J. J. J. M.
Request
Call Number 530.1
Author Gourgoulhon, Eric. author.
Title 3+1 Formalism in General Relativity [electronic resource] : Bases of Numerical Relativity / by Eric Gourgoulhon.
Material Info. XVII, 294p. 29 illus. online resource.
Series Lecture Notes in Physics, 0075-8450 ; 846
Series Lecture Notes in Physics, 0075-8450 ; 846
Summary Note This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.
Notes Basic Differential Geometry -- Geometry of Hypersurfaces -- Geometry of Foliations -- 3+1 decomposition of Einstein Equation -- 3+1 Equations for Matter and Electromagnetic Field -- Conformal Decompositon -- Asymptotic Flatness and Global Quantities -- The Initial Data Problem -- Choice of Foliation and Spatial Coordiinates -- Evolution Schemes -- Conformal Killing Operator and Conformal Vector Laplacian -- Sage Codes.
ISBN 9783642245251
Subject Physics.
Subject Computer science Mathematics.
Subject Astronomy.
Subject Physics.
Subject Numerical and Computational Physics.
Subject Classical and Quantum Gravitation, Relativity Theory.
Subject Astronomy, Astrophysics and Cosmology.
Subject Computational Mathematics and Numerical Analysis.
Added Entry SpringerLink (Online service)
Date Year, Month, Day:01405141
Link Online book

Keyword Search

 Words: Search Type:
 
 

Database: IISERK

Any filter options that are chosen below will be combined with the Session Filters and applied to the search.
Nature of Contents Filters Format Filters

Including Excluding

Including Excluding
Language Filters Place of Publication Filters

Including Excluding

Including Excluding
Publication Date Context Date
  -     -  

Set Session Filters
Select below to return to the last:
Copyright © 2014 VTLS Inc. All rights reserved.
VTLS.com