My Account | Home| Bulletin Board| Cart | Help
Close Session
IISER-KIndian Institute of Science Education & Research - Kolkata
Quick Search
Search Terms:
All Documents
Books
Newspapers
Periodicals
Articles
Theses
E-Books
Database : IISERK

Set Session Filters
Login to ask the library to add a book.
Active Filter Settings
No Active Filters
There are 0 titles in your cart.

Search History
Recommended Reading
first record | previous record | next record | last record
full | items(1) | marc
Record 1 of 1
  Total Requests  0      Unsatisfied Requests  0
You searched IISERK - Subject: Coast changes Mathematical models.
Request
Call Number 546.6 KOQ6
Author Kolobov, Alexander V., author.
Title Two-dimensional transition-metal dichalcogenides / Alexander V. Kolobov, Junji Tominaga.
Title 2-dimensional transition-metal dichalcogenides
Title 2D transition-metal dichalcogenides
Material Info. xvii, 538 pages : illustrations (some color) ; 24 cm.
Series Springer series in materials science, 0933-033X ; volume 239
Series Springer series in materials science ; v. 239.
Summary Note "This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nanoelectronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics"--
Notes Includes bibliographic references and index.
Notes References -- 2.1. Chemistry of Chalcogenides -- 2.1.1. Lone-Pair Semiconductors -- 2.1.2. Valence Alternation Pairs -- 2.1.3. Dative Bonds -- 2.1.4. sp3-Hybridization of Chalcogens -- 2.1.5. Multicenter Bonds -- 2.1.6. Transition-Metal Dichalcogenides -- 2.1.7. Ubiquitous Chalcogenides -- 2.2. Transition Metal Chemistry -- 2.2.1. Valence Bond Theory -- 2.2.2. Crystal-Field Theory -- 2.2.3. Ligand-Field Theory -- 2.2.4. Band Structure Calculations -- References -- 3.1. Atomic and Electronic Structure -- 3.1.1. Structure of Individual Triple Layers -- 3.1.2. Bulk Structural Polymorphs -- 3.1.3. Distorted Structures -- 3.1.4. Charge Density Waves -- 3.1.5. Van der Waals Interlayer Bonding -- 3.1.6. Group Theory Analysis -- 3.1.7. Electronic Structure -- 3.2. Optical Properties of Bulk TMDCs -- 3.2.1. Optical Absorption -- 3.2.2. Raman Scattering and Infra-Red Spectroscopy -- 3.3. Magnetism -- 3.3.1. Magnetism in MoS2 -- 3.3.2. Non-saturating Magnetoreststance in WTe2 -- 3.4. TMDC as Weyl Semimetals -- 3.5. Pressure-Induced Transformations -- 3.5.1. Pressure Effect on Physical Properties of MoS2 -- 3.5.2. Pressure Effect on Extremely Large Magnetoresistance in WTe2 -- 3.5.3. Pressure-Induced Structural Changes -- References -- 4.1. Top-Down Methods -- 4.1.1. Mechanical Exfoliation -- 4.1.2. Liquid Exfoliation -- 4.1.3. Electrochemical Exfoliation -- 4.2. Bottom-Up Techniques -- 4.2.1. Synthesis via Metal Chalcogenisation -- 4.2.2. Thermolysis of Thiosalts -- 4.2.3. Vapour Pressure Reaction of Transition Metal and Chalcogen Precursors -- 4.2.4. Growth of TMDC Alloys -- 4.2.5. Van der Waals Epitaxy -- 4.3. Layer Transfer -- 4.4. Analysis of 2D TMDC Layers -- 4.4.1. Comparison of Exfoliated and CVD-Grown TMDCs -- 4.4.2. Thickness Determination -- 4.4.3. Domain Orientation -- References -- 5.1. Structure of Single Layers -- 5.1.1. 2H-Phase -- 5.1.2. 1T-Phase -- 5.2. 2H-1T Phase Transition -- 5.2.1. Phase Stability -- 5.2.2. Atomistic Details of the 2H to 1T Phase Transition -- 5.2.3. Local Phase-Patterning -- 5.2.4. Stability of CDW States and Gate-Tunable Phase Transitions in nm-Thick 1T-TaS2 -- 5.3. Defects, Dislocations, and Grain Boundaries -- 5.3.1. Point Defects -- 5.3.2. Dislocations and Grain Boundaries -- 5.3.3. Grain Boundary Migration -- 5.4. Doping 2D TMDCs -- 5.5. Order-Disorder Phase Transitions in TMDC Alloys -- 5.6. Properties of Two-Dimensional TMDCs -- 5.6.1. Mechanical Properties -- 5.6.2. Thermal Expansion -- 5.6.3. Thermal Conductivity -- 5.6.4. Thermoelectric Properties -- 5.6.5. Optical Properties -- 5.6.6. Electrical Transport -- 5.6.7. Stability -- 5.7. Structures with Lower Dimensionality -- 5.7.1. TMDC Nanotilbes -- 5.7.2. Nanoribbons -- 5.7.3. Quantum Dots -- References -- 6.1. Theoretical Studies -- 6.1.1. Indirect-to-Direct Gap Transition -- 6.1.2. Monolayers Versus Bi-Layers -- 6.1.3. Spin-Orbit Splitting -- 6.1.4. Band Gap Tuning -- 6.1.5. Monolayer-Bilayer Boundary -- 6.1.6. Band Structure of the 1T-MoS2 Phase -- 6.1.7. Strong Light-Matter Coupling and Band Nesting -- 6.1.8. Excitonic Effects and Band Gap Renormalization -- 6.1.9. Van der Waals Interaction -- 6.1.10. Gapless MoS2 Allotrope -- 6.2. Experimental Studies -- 6.2.1. Optical Gap -- 6.2.2. Electronic Gap -- 6.2.3. Spin-Orbit Coupling -- 6.2.4. ARPES Measurements -- 6.2.5. Band Gap Renormalization -- References -- 7.1. Symmetry of Odd- and Even-Layer Structures -- 7.1.1. 2H-Polytype -- 7.1.2. 1T-Polytype -- 7.1.3. Raman Tensors -- 7.2. Non-resonant Raman Scattering -- 7.2.1. Unusual Behaviour of the E1/2g, and A1g Modes -- 7.2.2. Davydov Splitting -- 7.2.3. Low-Frequency Modes -- 7.2.4. Peaks Associated with Decreased Dimensionality -- 7.3. Laser Power Effects -- 7.3.1. Temperature Dependence of Raman Scattering -- 7.3.2. Photogating -- 7.4. Effect of Carrier Concentration -- 7.5. Effect of Substrate -- 7.6. Effect of Pressure and Strain on Raman Scattering -- 7.6.1. Uniaxial Strain -- 7.6.2. Hydrostatic Pressure -- 7.7. Twisted and Folded Structures -- 7.8. Helicity-Resolved Raman Scattering -- 7.9. Resonant Raman Scattering -- 7.9.1. MoS2 -- 7.9.2. WS2 -- 7.9.3. Raman Excitation Profiles -- 7.10. Thickness Determination -- 7.11. Raman Scattering of Specific Materials -- 7.11.1. Raman Modes of the 1T'-Phase -- 7.11.2. Rhenium Dichalcogenides: A 2D Response from 3D Samples -- 7.11.3. Raman Signatures as a Fingerprint of VdW Interaction in Heterostructures -- 7.11.4. Raman Scattering in 2D Group IVB TMDCs -- 7.11.5. TMDC Alloys -- References -- 8.1. Intrinsic PL from Monolayers Versus Few-Layer Structures -- 8.1.1. Effect of the Number of Layers -- 8.1.2. Effect of Interlayer Coupling (Twisted Layers) -- 8.1.3. Band Nesting Effects -- 8.2. Defect-Related Photoluminescence -- 8.2.1. Defect-Enhanced PL Yield -- 8.2.2. Quantum Light Emission -- 8.3. PL Tuning by External Stimuli -- 8.3.1. Pressure and Strain Effects -- 8.3.2. Electrical Gating -- 8.3.3. Effect of Doping -- 8.3.4. Substrate Effects -- 8.4. Electroluminescence -- 8.5. PL from TMDC Alloys -- References -- 9.1. Excitons in 2D -- 9.1.1. Exciton Binding Energy -- 9.1.2. Non-Rydberg Excitonic Series -- 9.1.3. 'Dark' Excitonic States -- 9.1.4. Excitonic Collapse -- 9.1.5. Effect of Surrounding Dielectric Media -- 9.1.6. Intra-Excitonic Transition -- 9.2. Exciton Dynamics -- 9.2.1. Exciton[—]Exciton Interaction -- 9.2.2. "Excitons in a Mirror" -- 9.3. Excitons and Trions -- 9.4. Excitons in Heterostrubtures -- References -- 10.1. Ferromagnetism Associated with Crystal Imperfections -- 10.1.1. Magnetic States at Edges -- 10.1.2. Magnetism at Grain Boundaries -- 10.1.3. Vacancy-Induced Magnetism -- 10.1.4. Disorder-Induced Magnetism -- 10.2. Doping-Induced Magnetism -- 10.2.1. Magnetism Due to Magnetic Dopants -- 10.2.2. Magnetism of Non-metal Adsorbates -- 10.3. Controlling Ferromagnetic Easy Axis -- 10.4. Strain-Induced Tunable Magnetism -- 10.5. Magnetism Associated with the 2H-1T Phase Transition -- 10.6. Non-saturating Magnetoreststance in WTe2 -- References -- 11.1. Valley Degree of Freedom -- 11.1.1. Optical Control of Valley Polarization -- 11.1.2. Electrical Control of Valley Polarisation -- 11.1.3. Valley Coherence -- 11.2. Zeeman-Type Splitting by an Electric Field -- 11.3. Magnetic Control of Valley Pseudospin in Monolayers -- 11.4. Valley Hall Effect -- 11.4.1. Nonlinear Valley and Spin Currents -- 11.5. Spin-Valley Physics in Bi-Layers -- 11.5.1. Electrical Control of Valley Magnetic Moment -- 11.5.2. Spin-Layer Locking -- 11.6. Spin Polarisation in Inversion-Symmetric Structures -- 11.7. Optical Stark Effect -- 11.8. Valley Depolarisation Dynamics -- References -- 12.1. Second Harmonic Generation -- 12.1.1. SHG from Odd- and Even-Layer Structures -- 12.1.2. SHG and Edge States -- 12.1.3. Resonant SHG -- 12.1.4. Excitonic Effects -- 12.1.5. SHG in Twisted Bi-layers -- 12.1.6. Electrical Control of SHG -- 12.1.7. SHG Dynamics -- 12.2. Piezoelectricity in Monolayer MoS2 -- 12.3. Quantum Spin Hall Effect -- 12.4. Burstein[—]Moss Effect -- 12.5. Gate-Tuned Superconductivity -- 12.6. Strong Light-Matter Coupling and Polaritons -- References -- 13.1. Vertical Heterostructures -- 13.1.1. Lattice-Matched Simulations -- 13.1.2. Minimized-Strain Calculations -- 13.1.3. Single Layer Vertical Heterostructures -- 13.1.4. Re-Stacked TMDCs -- 13.1.5. Heterostructures with Vertically Aligned Layers -- 13.1.6. Experimantal Studies -- 13.2. Lateral Heterostructures -- 13.2.1. Theoretical Studies -- 13.2.2. Experimental Results -- 13.3. Heterostructures Containing TMDC -- 13.3.1. TMDC/2D Heterostructures -- 13.3.2. Miscellaneous TMDC-Based Heterostructures -- References -- 14.1. Transistors -- 14.1.1. Single- and Few-Layer Field-Effect Transistors -- 14.1.2. Ambipolar Transistors -- 14.1.3. Vertical Heterostructure Devices -- 14.2. Integrated Circuits -- 14.2.1. Amplifiers -- 14.2.2. Logic Circuits -- 14.3. Optoelectronic Devices -- 14.3.1. Photodetectors and Solar Cells -- 14.3.2. Light-Emitting Devices -- 14.4. Valleytronics -- 14.5. Memory Devices -- 14.6. Contacts for 2D TMDC Devices -- 14.6.1. Basic Principles -- 14.6.2. Role of Metal Contacts: Experiments -- 14.6.3. Ways to Better Contacts -- 14.7. Miscellaneous Applications -- 14.7.1. Sensors -- 14.7.2. Nanomechanical Systems -- 14.7.3. Catalysis and Energy Application -- 14.7.4. Biomedical Applications -- References -- References -- References.
ISBN 3319314491
ISBN 9783319314495
Subject Chalcogenides.
Subject Chalcogenides.
Added Entry Tominaga, Junji, 1959- author.
Date Year, Month, Day:01901091
Purchase Order Status
PO ID Line Number Destination Order Quantity Received Quantity Latest Order Modification Date Last Received Date
315 106 The Librarian 1 1 9-28-2018 12:06 1-4-2019 00:00

Keyword Search

 Words: Search Type:
 
 

Database: IISERK

Any filter options that are chosen below will be combined with the Session Filters and applied to the search.
Nature of Contents Filters Format Filters

Including Excluding

Including Excluding
Language Filters Place of Publication Filters

Including Excluding

Including Excluding
Publication Date Context Date
  -     -  

Set Session Filters
Select below to return to the last:
Copyright © 2014 VTLS Inc. All rights reserved.
VTLS.com